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Abstract- In this paper we proposed to progressively explore the 
parameter space and build a parametric plan during several 
executions of a query. Novel algorithms which resemble 
parametric plans are populated, are able to frequently bypass 
the optimizer but still execute optimal or near-optimal plans. It 
is known that commercial applications usually rely on 
precompiled parameterized procedures to interact with a 
database. Unfortunately, executing a procedure with a set of 
parameters different from those used at compilation time may 
be arbitrarily suboptimal. Hence Parametric query optimization 
(PQO) attempts to solve this problem by exhaustively 
determining the optimal plans at each point of the parameter 
space at compile time.   
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I. INTRODUCTION 

The values of runtime parameters of the system, data, or 
queries themselves are unknown when queries are originally 
optimized but in certain situations two methods are used 
these scenarios, there are typically two trivial alternatives to 
deal with the optimization and execution of such 
parameterized queries. One approach, termed here as 
Optimize-Always, is to call the optimizer and generate a new 
execution plan every time a new instance of the query is 
invoked. Another trivial approach, termed Optimize-Once, is 
to optimize the query just once, with some set of parameter 
values, and reuse the resulting physical plan for any 
subsequent set of parameters. Both approaches have clear 
disadvantages. In addition, Optimize-Always may limit the 
number of concurrent queries in the system, as the 
optimization process itself may consume too much memory. 
On the other hand, Optimize-Once returns a single plan that 
is used for all points in the parameter space. 
However, in reality, the cost functions of physical plans and 
regions of optimality are not so well behaved. A more 
important problem results from the fact that PQO has a much 
higher start-up cost than optimizing a query a single time 
(PQO usually requires several invocations of the optimizer 
with different parameters [1], [2]).  When a previously 
unseen query arrives, it is therefore not clear to determine 
whether PQO should be used: it may not be cost-effective to 
solve the full PQO problem if the query is not executed 
frequently or if it is repeatedly executed with values covering 
a small subspace of the entire parameter space.  
 

II. PROGRESSIVE PARAMETRIC QUERY 

OPTIMIZATION 
The main goal / idea of Progressive parametric query 
optimization (PPQO) solves the solution to the PQO problem 
as successive 582 query execution calls are submitted to the 
DBMS as given in Fig. 1,  
 

 
This shows a high-level architecture of our approach. Given a 
query and its parameter values, a traditional optimizer returns 
the optimal execution plan along with its estimated cost. In 
contrast, a PPQO-enabled optimizer introduces a data 
structure called PP, which incrementally maintains plans and 
optimality regions, allowing us to reuse work across 
optimizations. When a new instance of a parametric query 
arrives, PPQO tries to obtain an optimal (or near-optimal) 
plan by consulting the PP data structure. If it is successful, it 
returns such plan, and a full optimization call is avoided.  
Otherwise, it makes an optimization call, and both the 
resulting optimal plan and cost are added to the PP for future 
use. Due to the size of the parameter space, PPs should not be 
implemented as exact lookup caches of plans because there 
would be too many “cache misses.” Also, due to the 
nonlinear and discontinuous nature of cost functions, PPs 
should not be implemented as nearest neighbor lookup 
structures as there will be no guarantee that the optimal plan 
of the nearest neighbor is optimal or close to optimal for the 
point in the parameter space being considered [3], [4]. We 
now describe the PPQO problem in more detail, borrowing 
notation and definitions from the classic parametric 
optimization problem. 
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III. PARAMETER TRANSFORMATION  FUNCTION 
It is known that a value parameter refers to an input value of 
the parametric SQL query to execute, a cost parameter is an 
input parameter in the formulas used by the optimizer to 
estimate the cost of a query plan. Cost parameters are 
estimated during query optimization from value parameters 
and from information in the database catalog. (Physical 
characteristics that affect the cost of plans but do not depend 
on query parameters, such as the average tuple size or the 
cost of a random I/O, are considered physical constants 
instead of cost parameters).  
Example 1. Table FRESHMEN (NAME, AGE) succinctly 
describes first-year graduate students. The age distribution of 
students is showed in Fig. 2. Consider queries of the 
following form: 
SELECT * FROM FRESHMEN 
WHERE AGE=$X$ OR AGE=$Y$ 

 
Fig. 2.Age distribution in table FRESHMEN 

 
The parameters of this query can be represented as the 
absolute values used for parameters $X$ and $Y$ or as the 
selectivities of predicate age = $X$ and predicate age = $Y$. 
Accordingly, the costs of physical PIDX and PFS can be 
represented in value-based parameter spaces, shown in Fig. 3, 
or in selectivity-based (also referred to as cost-based) 
parameter spaces, shown in Fig. 4. 

 
Fig. 3.Value-based parameter space 

 

 
Fig. 4.Selectivity-based parameter space 

It becomes much easier to characterize the regions of 
optimality using a cost-based parameter space than using a 
value-based parameter space. We assume that function Ψ’ 
takes query Q and its SQL parameters, vpt, and returns cpt as 
a vector of selectivity’s. Computing the selectivity’s in cpt 
corresponds to the task of selectivity estimation, a subroutine 
inside of query optimization. We note that the arity of the 
value-based parameter space and that of the selectivity-based 
parameter space are not necessarily the same. On one hand, it 
is possible to have predicates of the form age > $X$ and age 
< $Y$, where two value predicates are collapsed into a single 
selectivity value for the combined predicate. In our prototype 
and experimental evaluation, we use a simple one-to-one 
mapping between parametric predicates and selectivity 
values. 
 

  
 
The reasons behind our choice are the following: 1) this is the 
mapping used in previous work on parametric optimization, 
2) it can be implemented without deep knowledge about the 
underlying query optimizer, and 3) our experiments show that 
this simple model is very competitive. 
 

IV. PARAMETRICS PLANS: 
(a) Requirements and Goals: The main trade-off in 
PPQO is to avoid as many optimization calls as possible as 
long as we are willing to execute suboptimal—but close to 
optimal—plans (note that this goal has also been proposed in 
[5] and [6] in the context of classical PQO). Thus, PP 
implementations must obey the Inference Requirement 
below. 
(b) Inference Requirement. After a number of add Plan 
calls, there must be cases where getPlan returns an (near-
)optimal plan p for query Q and parameter point cpt, even if 
addPlan(Q,cpt,p.cost) was never called.  Given a sequence of 
execution requests of the same query with potentially 
different input parameters, PPQO has therefore two 
conflicting goals:  
Goal 1. Minimize the number of optimization calls.  
Goal 2. Execute plans with costs as close to the cost of the 
optimal plan as possible.  
Consider a trivial cache implementation of the PP interface, 
which stores (Q, cpt) pairs as the lookup key and (p, cost) as 
the inserted value. This implementation cannot fulfill the 
inference requirement because it would return hits only for 
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previously inserted (Q,cpt) pairs. In the next we propose two 
PPQO implementations, each giving priority to one of the 
above goals.  
 

V. THE BOUNDED – PPQO IMPLEMENTATION 
The proposed PPQO implementations known as Bounded-
PPQO or simply bounded. This implementation provides 
guarantees on the quality of the plans returned by getPlan (Q, 
cpt), thus focusing on Goal 2 of PPQO (see previous). Either 
the returned plan p is null (and an optimization call cannot be 
avoided) or p has a cost guaranteed to be within a user 
specified bound of the cost of the optimal plan. Specifically, 
the cost of plan p returned by get next is guaranteed to be 
bounded by OptCost_M+A, where OptCost is the cost of the 
optimal plan, and M≥1 and A≥0 are user-defined constants. 
Both M and A can be used to specify different bounds on 
suboptimality and are generally application specific.  
The ellipse-ppqo implementation 
Bounded’s getPlan provides strong guarantees on the cost of 
plans returned. However, we expect low hit rates of 
Bounded’s getPlan for small values of M and A or before 
Bounded’s TQ has been populated. In this we propose the 
Ellipse-PPQO (or simply Ellipse) implementation of the PP 
interface, designed to address Goal 1. For that purpose, 
Ellipse’s get Plan returns-acceptable plans rather than 
guaranteed near-optimal costs.  
It follows from the definition of Δ acceptable that if p is 
optimal at cpt1 and cpt2, then p is 1-acceptable only on points 
between cpt1 and cpt2 and p is 0-acceptable at all points. Note 
that in a two-dimensional space, the area where p is Δ 
acceptable is equivalent to the definition of an ellipse; if p is 
optimal for cpt1 and cpt2, then p is Δ acceptable at cpt if cpt 
is on or inside an ellipse of foci cpt1 and cpt2 such that the 
distance between the foci, ||cpt1-cpt2||. Over the sum of the 
distances between cpt and the foci, ||cpt-cpt1||+ || cpt- Cpt2||, 
is at least Δ shows the areas where p is 0.5-acceptable, 0.8-
acceptable, and 1-acceptable if p is optimal at cpt1 and cpt2. 
Ellipse-PPQO encodes the heuristic that if a plan p is optimal 
in two points cpt1 and cpt2, then p is likely to be optimal or 
near-optimal in a convex region that encloses cpt1 and cpt2. 
Note that a nearest neighbour algorithm could be used as an 
alternative to Ellipse-PPQO. However, since regions of 
optimality are frequently long and narrow [4], for any given 
cpt point, the closest known plan could very well be from 
another region of optimality. In addition, Δ acceptable areas 
can easily encode both small and large regions of optimality  
Implementation of addPlan for Ellipse: The implementation 
of addPlan for Ellipse proceeds as follows: For each query Q 
and for each plan p that is optimal in some point of the 
parameter space, Ellipse’s addPlan(Q; cpt; p; cost) essentially 
maintains a list of (cpt; cost) pairs, where p is optimal for Q 
 

VI. EVALUATION OF EXPERIMENT 
An experimental evaluation of PPQO using Microsoft SQL 
Server 2005. The client application implements the 
pseudocode and Microsoft SQL Server is used to obtain 
estimated optimal plans and estimated costs of plans.  

Data Set, Metrics, and Setup 
Table 1 shows which tables are joined by each query. The 
tables are line item (L), orders (O), customer (C), supplier 
(S), part (P), partsupp (T), nation (N), and region (R). As in 
the work of Reddy and Haritsa [4] and unless otherwise 
noted, we added two extra selections to the TPC-H queries to 
more easily explore the parameter space. The two selections 
are of the form coli≤ vali, i=1,2 where for each query, coli is 
one of the two columns shown in Table 1, and vali is a 
random value from the domain of the column. For each query 
tested, we generated 10,000 random val1 and val2 values. 
(A(val1,val2)pair is a ValuePoint.) To guarantee that random 
parameter values uniformly explore the parameter space, we 
altered the values in the columns subject to the extra 
selections to such that those values are uniformly distributed 
in their domains instead of using the nonuniform TPC-H 
generated distributions. For each query and each ValuePoint 
vpt, we make a getPlan lookup call where PP is either 
Optimize- Once, Optimize-Always, Bounded, or Ellipse. If 
getPlan returns a plan, we call it a hit and check if the plan is 
optimal; if it is not optimal, we check how its estimated cost 
compares with the estimated optimal cost.  
 

VII. VARIATION ON HIT RATE AND OPT RATE 
The first experiment consisted of processing queries using 
10,000 different random ValuePoints (value vectors) for each 
query and observing how HitRate and OptRate varied for 
Bounded and Ellipse. This experiment was performed for the 
five TPC-H queries listed in Table 1, and the results for three 
are shown in Figs. Several trends can be observed:    
 Ellipse always has a higher HitRate than Bounded. 
 Except for Query 8 (more on this below), Bounded 

always has a higher OptRate than Ellipse. 
 HitRate converges quickly, but OptRate converges 

slightly faster. 
 HitRate monotonically increases as a function of QP 

(more processed queries imply more misses, and each 
miss adds information to the ParametricPlan, therefore 
increasing the likelihood of future hits).  

 OptRate naturally varies up and down, as the initial 
random (cpt,plan,cost) triples are added to the 
ParametricPlan object, until it converges.  

Number of Plans and of Points, Space, and Time 
Storing the number of plans and the number of points took 
only between ~600 Kbytes to ~1,300 Kbytes using the 
original uncompressed XML plan representations provided 
by SQL Server. Storing zip-compressed XML plans instead 
would decrease the size of the plan representation by a factor 
of 10. (Plans do not need to be understood, zipped, or 
unzipped by addPlan or getPlan functions.)It reports the time 
and space taken by the Bounded and Ellipse approaches 
during optimization. Time (in seconds) includes the time 
elapsed during optimization (if there is a miss), during 
addPlan, and during getPlan but not the execution time nor 
the time consumed by function Ψ. For comparison purposes, 
the time taken for Optimize-Once and Optimize-Always is 
also included. After 10,000 queries have been processed, 
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Optimize- Always took between 5.2 and 13.6 times longer 
than Bounded and between 10.7 and 18.5 times longer than 
Ellipse. Thus, although Boundedonly used between 7 percent 
and 20 percent of the optimization time, it still returned plans 
that were on the average just 1 percent more costly than the 
optimal plan. Ellipse used between 5 percent and 9 percent of 
the optimization time and returned plans that were 6 percent 
more costly than the optimal plan. Ellipse was always faster 
than Bounded because it had less optimize and addPlan calls 
(due to higher HitRates) and faster getPlan calls (because it 
has less information stored in its PPs). Note that although 
Optimize-Once spends the least optimization time, it is not 
the best overall approach. In fact, the entire PQO research 
area aims to overcome the performance problems of using 
Optimize-Once. 
 

VIII. CONCLUSION 
Before PPQO, processing parameterized queries was an allor-
nothing approach: either the optimizer explores all the 
parameter space and computes the full PQO solution 
(traditional PQO) or it relies on luck and uses the very first 
plan it gets for a query. At execution time, PPQO selects 
which plan to execute by using only the input cost parameters 
without recosting plans. PPQO is an adaptive technique that 
works prior to execution (and assumes the optimizer to be 
correct—just like any other PQO approach). Query 
reoptimization [6] and other adaptive query processing 
(AQP) approaches [1], [4] work during optimization and 
execution and assume that the optimizer can make mistakes 
or that the system characteristics change significantly during 
the execution of a single query. Also, PPQO is an interquery 
adaptive approach, while AQP are frequently intraquery 
optimization approaches. PPQO is also amenable to be 
implemented in a complex commercial database system as it 
requires no changes in the optimization or execution 
processes. 
 In fact, our PPQO prototype ran outside the DBMS server. 
For technical reasons, we did not implement function Ψ 
ourselves but instead used SQL Server’s cost model to 
transform value into cost parameters. For that reason, we did 
not evaluate the impact of such function in our experimental 
evaluation. PPQO was evaluated in a variety of settings, with 
queries joining up to table, with multiple sub queries, up to 
four parameters, and in plan spaces with close to 400 
different optimal plans. PPQO yielded good results in all 
scenarios except for the Bounded algorithm in complex 
queries using a four-dimensional parameter space. However, 
even in this challenging scenario, Ellipse on the average 
executed plans just 3 percent more costly than the optimal, 
while avoiding 87 percent of all optimization calls.   
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